New Discrete Cebysev-Gruss Type Inequalities
Girish Kapoor
Department of Mathematics, Govt. College Arki, Distt. Solan, Himachal Pradesh, India.
Corresponding Auther: grshkapoor@gmail.com
ABSTRACT:
In the present note we establish two new discrete Cebysev-Gruss type inequalities by using a fairly elementary analysis.
Mathematics Subject Classification 2000. Primary 26D15, Secondary 94A05
KEYWORDS: Cebysev- Gruss type inequalities, discrete Korkine type identity, Cauchy- Schwarz inequality, Gruss inequality.
REFERENCES:
1. A. M. Fink, A treatise on Gruss inequality, Anlytic and Geometric Inequalities and Applications, T. M. Rassias and H. M. Srivastava, Editors Kluwer, 1999, 93 - 114.
2. M. Biernacki, H. Pidek and C. Ryll Nardzewski, Sur une inegalite entre des integrates definies, Ann. Univ. Marae Curie Sklodowska, A, 4 (1950), 1- 4.
3. S. S. Dragomir, Integral Gruss type inequality for mapping with values in Hilbert spaces and its applications, J. Korean Math. Soc. 38 (2001), 1261 1273.
4. S. S. Dragomir and L. Khan, Two discrete inequalities of Gruss type via polya Szego and Shisha results for numbers, Tamkang J. of Math.
5. Shiow Ru Hwang and Ming in Ho, On discrete inequalities of Gruss type, Tamkang J. of Mathematics, 3 (2004), 213 217.
6. D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic publishers, Dordrecht, 1993.
7.
R. Sharma, R.G. Shandil, G. Kapoor and N.S. Barnett, Some bounds on sample variance in
terms of mean and extreme values, Advances in inequalities from Probability
Theory and Statistics. Edited by N.S.Barnett and S.S.Dragomir Nova publication, 187-193, 2008.
|
Received on 14.11.2016 Modified on 28.11.2016 Accepted on 03.12.2016 İA&V Publications All right reserved DOI: 10.5958/2349-2988.2017.00009.2 Research J. Science and Tech. 2017; 9(1):51-54.
|
|