New Discrete Cebysev-Gruss Type Inequalities

 

Girish Kapoor

Department of Mathematics, Govt. College Arki, Distt. Solan, Himachal Pradesh, India.

Corresponding Auther: grshkapoor@gmail.com

 

ABSTRACT:

In the present note we establish two new discrete Cebysev-Gruss type inequalities by using a fairly elementary analysis.

 

Mathematics Subject Classification 2000. Primary 26D15, Secondary 94A05            

 

KEYWORDS: Cebysev- Gruss type inequalities, discrete Korkine type identity, Cauchy- Schwarz inequality, Gruss inequality.

 

REFERENCES:

1.     A. M. Fink, A treatise on Gruss inequality, Anlytic and Geometric Inequalities and Applications, T. M. Rassias and H. M. Srivastava, Editors Kluwer, 1999, 93 - 114.

2.     M. Biernacki, H. Pidek and C. Ryll – Nardzewski, Sur une inegalite entre des integrates definies, Ann. Univ. Marae Curie – Sklodowska, A, 4 (1950), 1- 4.

3.     S. S. Dragomir, Integral Gruss type inequality for mapping with values in Hilbert spaces and its applications, J. Korean Math. Soc. 38 (2001), 1261 – 1273.

4.     S. S. Dragomir and L. Khan, Two discrete inequalities of Gruss type via polya – Szego and Shisha results for numbers, Tamkang J. of Math.

5.     Shiow – Ru Hwang and Ming – in Ho, On discrete inequalities of Gruss type, Tamkang J. of Mathematics, 3 (2004), 213 – 217.

6.     D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic publishers, Dordrecht, 1993. 

7.     R. Sharma, R.G. Shandil, G. Kapoor and N.S. Barnett, Some bounds on sample variance in terms of mean and extreme values, Advances in inequalities from Probability Theory and Statistics. Edited by N.S.Barnett and S.S.Dragomir Nova publication, 187-193, 2008.

 

 

Received on 14.11.2016       Modified on 28.11.2016

Accepted on 03.12.2016      İA&V Publications All right reserved

DOI: 10.5958/2349-2988.2017.00009.2

Research J. Science and Tech. 2017; 9(1):51-54.